# CMP40N20P/CMB40N20P



### N-Channel Enhancement Mode Field Effect Transistor

### **General Description**

The 40N20P uses advanced planar stripe DMOS technology and design to provide excellent RDS(ON). These devices are wellsuited for high efficiency switched mode power supplies,active power factor correction based on half bridge topology.

# **Product Summary**

| BVDSS | RDS(on) max. | ID  |
|-------|--------------|-----|
| 200V  | 65mΩ         | 40A |

# Applications

- LED power controller
- DC-DC & DC-AC converters
- High current, high speed switching
- Solenoid and relay drivers
- Motor control, Audio amplifiers

## TO-220/263 Pin Configuration

#### Features

- Fast switching
- Low On-Resistance
- 100% avalanche tested
- RoHS Compliant

# Absolute Maximum Ratings

| G D S  | GSS    | GO |
|--------|--------|----|
| TO-220 | TO-263 |    |

| Туре      | Package Marking |           |
|-----------|-----------------|-----------|
| CMP40N20P | TO-220          | CMP40N20P |
| CMB40N20P | TO-263          | CMB40N20P |

| Symbol                               | Parameter                            | Rating     | Units |
|--------------------------------------|--------------------------------------|------------|-------|
| V <sub>DS</sub>                      | Drain-Source Voltage                 | 200        | V     |
| V <sub>GS</sub>                      | Gate-Source Voltage                  | ±20        | V     |
| I₀@T₀=25℃                            | Continuous Drain Current             | 40         | А     |
| I <sub>D</sub> @T <sub>C</sub> =100℃ | Continuous Drain Current             | 32         | А     |
| I <sub>DM</sub>                      | Pulsed Drain Current                 | 160        | А     |
| EAS                                  | Single Pulse Avalanche Energy        | 1000       | mJ    |
| P <sub>D</sub> @T <sub>C</sub> =25℃  | Total Power Dissipation              | 160        | W     |
| T <sub>STG</sub>                     | Storage Temperature Range -55 to 175 |            | °C    |
| TJ                                   | Operating Junction Temperature Range | -55 to 175 | °C    |

# **Thermal Data**

| Symbol           | Parameter                           | Тур. | Max. | Unit |
|------------------|-------------------------------------|------|------|------|
| R <sub>0JA</sub> | Thermal Resistance Junction-ambient |      | 62.5 | °C/W |
| R <sub>θJC</sub> | Thermal Resistance Junction-case    |      | 0.78 | °C/W |



#### **N-Channel Enhancement Mode Field Effect Transistor**

#### Electrical Characteristics (T\_J=25 $^\circ\!\!\mathbb{C}$ , unless otherwise noted)

| Symbol              | Parameter                         | Conditions                                          | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------|-----------------------------------------------------|------|------|------|------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage    | $V_{GS}$ =0V , I <sub>D</sub> =250uA                | 200  |      |      | V    |
| R <sub>DS(ON)</sub> | Static Drain-Source On-Resistance | V <sub>GS</sub> =10V , I <sub>D</sub> =20A          |      |      | 65   | mΩ   |
| V <sub>GS(th)</sub> | Gate Threshold Voltage            | $V_{GS}=V_{DS}$ , $I_D=250 uA$                      | 2    |      | 4    | V    |
| I <sub>DSS</sub>    | Drain-Source Leakage Current      | V <sub>DS</sub> =200V , V <sub>GS</sub> =0V         |      |      | 1    | uA   |
| I <sub>GSS</sub>    | Gate-Source Leakage Current       | $V_{GS}$ = ±20V , $V_{DS}$ =0V                      |      |      | ±100 | nA   |
| gfs                 | Forward Transconductance          | V <sub>DS</sub> =10V , I <sub>D</sub> =28A          |      |      |      | S    |
| Qg                  | Total Gate Charge                 | I <sub>D</sub> =20A                                 |      | 61   |      |      |
| Q <sub>gs</sub>     | Gate-Source Charge                | V <sub>DD</sub> =100V                               |      | 17   |      | nC   |
| Q <sub>gd</sub>     | Gate-Drain Charge                 | V <sub>GS</sub> =10V                                |      | 19   |      |      |
| T <sub>d(on)</sub>  | Turn-On Delay Time                |                                                     |      | 21   |      |      |
| Tr                  | Rise Time                         | $V_{DD}$ =50V, $V_{GS}$ =10V                        |      | 29   |      | 20   |
| T <sub>d(off)</sub> | Turn-Off Delay Time               | R <sub>G</sub> =2.5Ω                                |      | 66   |      | 115  |
| T <sub>f</sub>      | Fall Time                         | ID=28A                                              |      | 16   |      |      |
| C <sub>iss</sub>    | Input Capacitance                 |                                                     |      | 2700 |      |      |
| C <sub>oss</sub>    | Output Capacitance                | $V_{\text{DS}}$ =25V , $V_{\text{GS}}$ =0V , f=1MHz |      | 382  |      | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance      |                                                     |      | 50   |      |      |

## **Diode Characteristics**

| Symbol          | Parameter                 | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|-----------------------------------------------------------------|------|------|------|------|
| Is              | Continuous Source Current | $V_G = V_D = 0V$ , Force Current                                |      |      | 40   | А    |
| I <sub>SM</sub> | Pulsed Source Current     |                                                                 |      |      | 160  | А    |
| V <sub>SD</sub> | Diode Forward Voltage     | V <sub>GS</sub> =0V , I <sub>F</sub> =40A , T <sub>J</sub> =25℃ |      |      | 1.4  | V    |
| trr             | Reverse Recovery Time     | V <sub>GS</sub> =0V, I <sub>F</sub> =20A                        |      | 185  |      | ns   |
| Qrr             | Reverse Recovery Charge   | dı⊧ /dt=100A/µs                                                 |      | 1.2  |      | μC   |

Note :

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.