

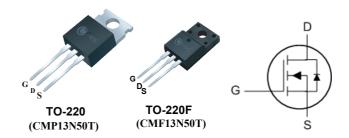
500V N-Channel MOSFET

General Description

The 13N50T is produced using advanced high voltage MOSFET technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 100% avalanche tested
- Fast Switching
- Improved dv/dt capability


Product Summary

BVDSS	RDSON	ID
500V	0.48Ω	13A

Applications

- Switching regulators
- UPS (Uninterruptible Power Supply)
- DC-DC converters

TO-220/220F Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	CMP13N50T/CMF13N50T		Units
V _{DS}	Drain-Source Voltage	500		V
V_{GS}	Gate-Source Voltage	±30		V
I _D @T _C =25℃	Continuous Drain Current	13	13*	Α
I _D @T _C =100℃	Continuous Drain Current	8	8*	А
I _{DM}	Pulsed Drain Current ¹	52	52*	А
EAS	Single Pulse Avalanche Energy ²	860		mJ
P _D @T _C =25°C	Total Power Dissipation	200	50	W
T _{STG}	Storage Temperature Range	-55 to 150		$^{\circ}$ C
TJ	Operating Junction Temperature Range	-55 to	-55 to 150	

^{*} Drain current limited by maximum junction temperature.

Thermal Data

Symbol	Parameter	CMP13N50T	CMF13N50T	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient	62.5	62.5	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-case	0.64	2.58	°C/W

CMP13N50T/CMF13N50T

500V N-Channel MOSFET

Electrical Characteristics ($T_J=25^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	500			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =6.5A			0.48	Ω
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
		V _{DS} =500V, V _{GS} =0V			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =400V , V _{GS} =0V , TC=125℃			10	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =7A		12		S
Qg	Total Gate Charge	I _D =13A		45		
Q _{gs}	Gate-Source Charge	V _{DS} =400V		8		nC
Q _{gd}	Gate-Drain Charge	V _{GS} = 10V (Note 3, 4)		20		1
T _{d(on)}	Turn-On Delay Time	V 050V		25		
T _r	Rise Time	V _{DS} =250V		100		
$T_{d(off)}$	Turn-Off Delay Time	$ \begin{array}{c} \longrightarrow \\ I_D = 13A \\ \longrightarrow \\ R_G = 25\Omega \end{array} $ (Note 3, 4)		130		ns
T _f	Fall Time			100		
C _{iss}	Input Capacitance			2800		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		200		pF
C _{rss}	Reverse Transfer Capacitance			20		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			13	Α
I _{SM}	Pulsed Source Current				52	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =13 A , T _J =25℃			1.5	V

Note

1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.L = 6mH , I as = 17A, VDD = 80V, Starting TJ = 25 $^{\circ}$ C

3.Pulse Test: Pulse width≤300µs, Duty Cycle≤2%

4. Essentially Independent of Operating Temperature Typical Characteristics

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.