科學家正開發像人類一樣會"思考"的人工智能
來源:cnBeta.COM
人們希望這項新工作將為創造更可靠的人工智能技術鋪平道路,這種技術將像人類一樣處理信息,并出現我們可以理解和預測的錯誤。人工智能發展仍然面臨的挑戰之一是如何更好地理解機器的思維過程,以及它是否與人類處理信息的方式相匹配,以確保準確性。深度神經網絡經常被認為是目前人類決策行為的最佳模型,在一些任務中達到甚至超過人類的表現。然而,即使是欺騙性的簡單視覺辨別任務,與人類相比,人工智能模型也會顯示出明顯的不一致和錯誤。
目前,深度神經網絡技術被用于人臉識別等應用,雖然它在這些領域非常成功,但科學家們仍然沒有完全理解這些網絡是如何處理信息的,因此何時可能出現錯誤。
在這項新的研究中,研究小組通過對深度神經網絡得到的視覺刺激進行建模,以多種方式進行轉換,從而解決了這一問題,他們可以通過處理人類和人工智能模型之間類似的信息來證明識別的相似性。
該研究的資深作者、格拉斯哥大學神經科學與技術研究所所長PhilippeSchyns教授說。"在建立行為"像"人類的人工智能模型時,例如,只要看到一個人的臉,就能像人類一樣識別出來,我們必須確保人工智能模型使用與另一個人相同的信息來識別它。如果人工智能不這樣做,我們可能會有這樣的錯覺,即該系統的工作方式與人類一樣,但隨后發現它在一些新的或未經測試的情況下會出錯。"
研究人員使用了一系列可修改的3D面孔,并要求人類對這些隨機生成的面孔與四個熟悉身份的相似性進行評分。然后他們用這些信息來測試深度神經網絡是否出于同樣的原因做出了同樣的評價--不僅測試人類和人工智能是否做出了同樣的決定,而且還測試它是否基于同樣的信息。研究人員希望這項工作將為更可靠的人工智能技術鋪平道路,使其行為更像人類,并減少不可預知的錯誤。